измерение данных запроса scitkit-learn должно соответствовать размеру данных обучения

Я пытаюсь использовать этот код на сайте изучения scikit:

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Я использую свои данные. Моя проблема в том, что у меня есть намного больше двух функций. Если я хочу «расширить» функции от 2 до 3 или 4 ….

Я получаю:

«Размер данных запроса должен соответствовать размеру данных обучения»

def machine(): with open("test.txt",'r') as csvr: reader= csv.reader(csvr,delimiter='\t') for i,row in enumerate(reader): if i==0: pass elif '' in row[2:]: pass else: liste.append(map(float,row[2:])) a = np.array(liste) h = .02 names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"] classifiers = [ KNeighborsClassifier(1), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()] X = a[:,:3] y = np.ravel(a[:,13]) linearly_separable = (X, y) datasets =[linearly_separable] figure = plt.figure(figsize=(27, 9)) i = 1 for ds in datasets: X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) print clf.fit(X_train, y_train) score = clf.score(X_test, y_test) print y.shape, X.shape if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) print Z else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show() 

В этом случае я использую три функции. Что я делаю неправильно в коде, это что-то с данными X_train и X_test? Всего лишь две функции, все в порядке.

мое значение X:

 (array([[ 1., 1., 0.], [ 1., 0., 0.], [ 1., 0., 0.], [ 1., 0., 0.], [ 1., 1., 0.], [ 1., 0., 0.], [ 1., 0., 0.], [ 3., 3., 0.], [ 1., 1., 0.], [ 1., 1., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 4., 4., 2.], [ 0., 0., 0.], [ 6., 3., 0.], [ 5., 3., 2.], [ 2., 2., 0.], [ 4., 4., 2.], [ 2., 1., 0.], [ 2., 2., 0.]]), array([ 1., 1., 1., 1., 0., 1., 1., 0., 1., 1., 0., 1., 1., 1., 1., 1., 0., 1., 1., 0., 1., 0., 1., 1.])) 

Первый массив – это массив X, а второй массив – массив y (target).

Прошу прощения за неправильный формат = ошибка:

  Traceback (most recent call last): File "allM.py", line 144, in <module> mainplot(namePlot,1,2) File "allM.py", line 117, in mainplot Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] File "/usr/local/lib/python2.7/dist-packages/sklearn/neighbors/classification.py", line 191, in predict_proba neigh_dist, neigh_ind = self.kneighbors(X) File "/usr/local/lib/python2.7/dist-packages/sklearn/neighbors/base.py", line 332, in kneighbors return_distance=return_distance) File "binary_tree.pxi", line 1298, in sklearn.neighbors.kd_tree.BinaryTree.query (sklearn/neighbors/kd_tree.c:10433) ValueError: query data dimension must match training data dimension 

и это массив X, не помещая его в набор данных «ds».

 [[ 1. 1. 0.][ 1. 0. 0.][ 1. 0. 0.][ 1. 0. 0.][ 1. 1. 0.][ 1. 0. 0.][ 1. 0. 0.][ 3. 3. 0.][ 1. 1. 0.][ 1. 1. 0.][ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.][ 4. 4. 2.][ 0. 0. 0.][ 6. 3. 0.][ 5. 3. 2.][ 2. 2. 0.][ 4. 4. 2.][ 2. 1. 0.][ 2. 2. 0.]] 

One Solution collect form web for “измерение данных запроса scitkit-learn должно соответствовать размеру данных обучения”

Это происходит потому, что clf.predict_proba() требует массив, в котором каждая строка имеет такое же количество элементов, что и строки в данных обучения, другими словами, вход с формой (num_rows, 3) .

Когда вы работали с двумерными np.c_[xx.ravel(), yy.ravel()] это работало, потому что результат np.c_[xx.ravel(), yy.ravel()] – это массив с двухэлементными строками:

 print np.c_[xx.ravel(), yy.ravel()].shape (45738, 2) 

Эти экземпляры имеют два элемента, потому что они создаются с помощью np.meshgrid который используется в примере кода для создания набора входов для покрытия двумерного пространства, которое будет хорошо отображаться. Попробуйте передать массив с тремя элементами в clf.predict_proba и все должно работать нормально.

Если вы хотите воспроизвести этот конкретный фрагмент кода примера, вам нужно будет создать 3D-сетку, как описано в этом вопросе на SO. Вы также можете распечатать результаты в 3D, где mplot3d будет служить хорошей отправной точкой, хотя на основе (по общему признанию, кратковременного) взгляда, который я дал для построения в примере кода, я подозреваю, что это может быть больше проблем, чем того стоит , Я не совсем уверен, как выглядит 3D-аналог этих сюжетов.

  • Обучение логистической регрессии с использованием scikit для многоклассовой классификации
  • Различные версии sklearn дают совершенно разные результаты обучения
  • scikit-learn: ValueError: недостаточно значений для распаковки (ожидается 2, получено 1)
  • Можно ли печатать дерево решений в scikit-learn?
  • Извлечение атрибутов из изображений с помощью Scikit-image
  • Случайный лес перерабатывает
  • Использование scikit-learn векторизаторов и словарей с gensim
  • Алгоритм PLS-DA в python
  • Python - лучший язык программирования в мире.